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Abstract. Recently we discovered the phenomenon of hypersensitivity to small time-dependent signals in
a simple stochastic system, the Kramers oscillator with multiplicative white noise. In the present work
we study, theoretically and experimentally with analog simulations, an influence of noise correlation time
on hypersensitivity in a nonlinear oscillator with piecewise-linear current-voltage characteristic and mul-
tiplicative colored dichotomous noise. We found that the region of hypersensitive behavior is defined by
universal scaling index, whereas the specifics of a particular system reveals itself only in the dependence
of the above index on system parameters. The dependence of gain factor on noise correlation time is of
bell-shaped (resonant) type.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 84.30.-r Electronic circuits

1 Introduction

The role of noise in physical systems in last two decades
was subjected a substantial reassessment induced by dis-
covery of numerous interesting phenomena caused by it.
Up to now, it is known that in nonlinear systems noise can
induce phase transitions [1], complex ordered patterns [2],
directed transport of matter [3–7], as well as facilitate
transduction of external signal [8–11], waves [12–14] and
enhance diffusion [15] in the system.

The next example of constructive role of noise is the
noise-induced hypersensitivity to small time-dependent
signals recently found by us analytically, numerically and
experimentally [16–19] in a nonlinear Kramers oscillator
with multiplicative white noise. Under effect of large para-
metric noise the system was able to amplify an ultrasmall
(of the order of, e.g., 10−20) deterministic ac signal up to
the value of the order of unity. Such an anomalous sensitiv-
ity in the system is a result of on-off intermittency [20–28].

On-off intermittency appears in a dynamical system
when it passes through a bifurcation point under effect of
external stochastic time-dependent forcing. It attracts a
stable interest of investigators due to its several intrigu-
ing properties, the most easily observable of which is the
specific time behavior of physical quantities: the bursts of
large amplitude alternate randomly with the long quiet
periods with near-zero amplitude.

On-off intermittency has an important feature of
power-law dependence of probability density of burst
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amplitude [26–28]:

F (x) ∼ xα−1, (1)

where α is the scaling index.
This expression holds in a wide range of amplitudes

A � x � 1, where A is the magnitude of small external
signal [16] and the system size is set to unity.

For α < 0, |α| � 1 and for vanishingly small external
signal (A→ 0) we get F (x)→ δ(x), so the system variable
always have near-zero values.

Now, when

A > A0 = exp(−1/|α|), (2)

it appears that the moments of distribution grow up to
the order of unity. Because for |α| � 1 the value of A0 is
exponentially small, practically any physical value of the
signal results in a response of the order of unity. We call
this phenomena as hypersensitivity. A similar, but more
complex situation appears for small positive α.

As it is shown in [16] the hypersensitivity is caused
mainly by multiplicative noise. We restricted ourselves
there by consideration of white noise only. However, it
is intuitively clear that this restriction does not affect the
physical nature of the problem, and the phenomenon of
hypersensitivity should appear in practically all problems
with multiplicative noise. This means that the asymptot-
ical relation (1) is always valid for A � 1, and we can
introduce the parameter α. The only necessary condition
for this is the existence of wide parameter range where
the scaling index α is small. The condition of its small-
ness is the condition of existence of hypersensitivity in a
particular system. We call α the sensitivity index.
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For Gaussian white noise we found that for adiabatic
conditions α is inversely proportional to mean square of
the noise. As a result, the condition of hypersensitivity
is valid for sufficiently large noise amplitude, i.e. hyper-
sensitivity is induced by noise. Further increase of noise
amplitude forces the system to leave adiabatic regime, and
the signal gain factor decreases, like conventional stochas-
tic resonance.

In the case of colored noise, index of sensitivity de-
pends, as we show below, both on amplitude and on cor-
relation time of the noise. The dependence of signal gain
factor on both these parameters is of bell-shaped type.
The choice of system with colored noise as an example of
versatility of our approach is physically natural, because
any real stochastic process has nonvanishing correlation
time. We consider the simplest colored noise, the random
telegraph noise, when the problem allows an analytical so-
lution. We found that for both noise sources, white and
colored, the system behavior is the same, and hypersen-
sitivity region is defined solely by the condition |α| � 1.
Thereby, the phenomenon of hypersensitivity in systems
with multiplicative noise is really universal. We should no-
tice, hereinafter, that considered systems with multiplica-
tive noise are the special case of systems with on-off in-
termittency: their bifurcation parameter changes its sign
randomly, and the system behavior for different signs is
quite different. One could show also that the scaling (1)
is characteristic for all systems with on-off intermittency
and therefore the phenomenon of hypersensitivity should
appear there.

2 Theory

White noise is known to be an abstraction, since any real
physical noise process has a finite correlation time τ , i.e.,
a real noise is a colored noise. In general theoretical treat-
ment of the problem, we should include white noise limit,
when noise amplitude increases together with decreasing
of correlation time as τ−1/2. This condition is not valid for
τ → 0. In addition, the finite correlation time should be
taken in account for the case when that time is comparable
with the period of the external signal. Thus, in this paper
we perform a theoretical treatment of the phenomenon
of hypersensivity induced by multiplicative colored noise
“from scratch”.

We study a general stochastic equation in periodic
square-wave field:

dx
dt

= f(x, z) +AE(t),

E(t+ T ) = E(t) =
{

1, 0 < t < T/2
−1, T/2 < t < T.

(3)

Here z(t) is the random variable with zero mean and with
autocorrelation

< z(t)z(t′) >= ∆2 exp(−γ|t− t′|). (4)

For telegraph (dichotomous) noise z(t) is as follows:

z(t) = ∆S(t), S(t) = ±1, (5)

where S(t) is the random variable that changes its sign
with the rate γ/2. For colored noise the variables x(t) and
z(t) define a two-dimensional Markov process, with two-
dimensional Fokker-Planck equation (FPE) for probability
density F (x, z, t).

For dichotomous noise the variable z(t) can take only
two values ±∆, and therefore the equation for F (x, z, t)
reduces to two equations [1]:

∂F (x,±∆, t)
∂t

= − ∂

∂x
([f(x,±∆) +AE(t)]F (x,±∆, t))

+
γ

2
[F (x,∓∆, t)− F (x±∆, t)]. (6)

Let us discuss now a choice of f(x, z). On-off intermittency
means a stochastically modulated bifurcation parameter.
With noise z taking only two values ±∆, one of them (z =
−∆) must correspond to fixed point x = 0, and other (z =
∆) to another fixed point x = x1 6= 0. In such a case with
two competing fixed points on-off intermittency appears
for |α| � 1, together with hypersensitivity. The latter is
studied by us with analog simulations, and we use below
f(x, z) of the same type as in the analog simulations:

f(x, z) =

a(x+ x1); x < −x0(z),
(λ + z)x; |x| < x0(z),
−a(x− x1); x > x0(z),

(7)

x0(z) = ax1/(a+ λ+ z).

The function x0(z) in (7) is chosen in such a way that for
x = x0(z) f(x, z) is a continuous function with a cusp. To
make x0(z) positive we should assume

a > ±∆− λ. (8)

Figure 1 displays f(x,±∆) for ∆ > |λ|. We see that for
z = ∆ there are two stable fixed points x = ±x1, and for
z = −∆ there is only one such point x = 0. Thereby, in our
system the necessary condition for on-off intermittency
and hypersensitivity is fulfilled.

The sufficient condition for existence of the latter phe-
nomena is a power-law dependence of F (x) (1) for small
|x| � 1 and small sensitivity index |α| � 1. To test
this condition we should solve equation (3) with f(x, z)
from (7) and obtain the asymptotic relation (1). Equa-
tion (6) can be solved explicitly only in the adiabatic
limit, when the period of the signal T is much greater
than the characteristic time of establishing of a stationary
distribution. It was shown in [1] that for fixed input signal
(E(t) = 1) it is possible to find a stationary solution of
equation (6). For adiabatic time-dependent signal we can
obtain solutions for positive and negative values of input
signal separately. For E(t) = 1 we obtain for probability
density F (x) = F (x,∆) + F (x,−∆) the following closed
expression [1]:

F (x) = C
∣∣ f(x,∆)− f(x,−∆)
(f(x,∆) +A)(f(x,−∆) +A)

∣∣
× exp

(
−γ

2

∫
dx
[

1
f(x,∆) +A

+
1

f(x,−∆) +A

])
.

(9)
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Fig. 1. Function f(x, z = ±∆) in (7).

There are four constants of the same dimensionality in the
problem: a, ∆, λ and γ. In further treatment we consider
the case

∆ > |λ|, a > ∆+ |λ|. (10)

Thus expression (9) for A
∆−A < x < x0(∆) and x1 � A

after some standard calculations becomes

F (x) = Cx

(
x+

A

∆+ λ

)−1− γ
2(∆+λ)

×
(
x− A

∆− λ

)−1+ γ
2(∆−λ)

. (11)

For x0(∆) < x < x1 we get:

F (x) = Cx−1+ γ
2(∆−λ) [x0(∆)]−

γ
2(∆−λ)

×(x1 − x)−1+ γ
2a
∆+ λ

a
(x1 − x0(∆))−

γ
2a

×
[
a

2∆
(x1 − x) +

∆− λ
2∆

x

]
F (x) = 0, x > x1. (12)

Here F (x) is defined on the interval (the carrier of prob-
ability density function)[

A

∆− λ ;x1

]
. (13)

For x = x0(∆), F (x) in (11) and (12) must be the
same. From (11) and (12) it is easily seen that, as far
as x0(∆)� A:

F (x0) = C[x0(∆)]−1+α, α =
γλ

∆2 − λ2
· (14)

Further, from (11) we get for A� x < x0(∆):

F (x) = Cx−1+α, (15)

that coincides with (1), with sensitivity index α defined
by (14). The condition of hypersensitivity |α| � 1 gives us:

γ|λ| � ∆2 − λ2. (16)

In the similar manner, for E(t) = −1 we get a “mirror
image” of (11) and (12). For instance, for −x0(∆) < x <
− A
∆−λ it reads:

F (x) = C(−x)
(
−x+

A

∆+ λ

)−1− γ
2(∆+λ)

×
(
−x− A

∆− λ

)−1+ γ
2(∆−λ)

. (17)

Note that for γ < 2a there is a singularity in (12) also for
x = x1.

Let us calculate now the normalization constant C. It
is rather complex to obtain it exactly in a general case,
but one can easily see that for |α| � 1, γ/2a the main con-
tribution to normalization constant comes from the region
x ∼ A, i.e. from the bottom edge of the carrier of F (x).
Therefore a good estimate for C is simply:

C−1 = B−1

∫ x1

A

xα−1dx = B−1 x
α
1 −Aα
α

, (18)

where B is the constant independent on A. Since |α| � 1,
from (18) we obtain:

C = B

α, α > 0, ζ � 1,
1/ln(1/A), ζ � 1,
|α|A|α|, α < 0, ζ � 1,

ζ = |α|ln(1/A). (19)

Let us now calculate the moments of distribution in adia-
batic (in relation to signal period) approximation. Taking
into account that the moments are determined by the re-
gion |x| > A, we use the expression (15) for |x| < x0(∆)
and the similar one for E(t) = −1. Then, using (19) we
get, for instance, for ζ � 1:

〈x(t)〉 ∼ E(t)x1/ln(1/A),
〈x2(t)〉 ∼ x2

1/ln(1/A),
〈x(t)〉2/〈x2(t)〉 ∼ 1/ln(1/A),

I =
〈x(t)〉
AE(t)

∼ x1

A ln(1/A)
, (20)

where I is the signal gain factor. The expression for ζ � 1
are similar. We see that, with an accuracy up to ln(1/A)
all the moments of x(t) have values of the order of the cor-
responding power of x1, and the gain factor I ∼ x1

A � 1.
On the other hand, when taking A = 0, all the moments
for α < 0 vanish, since F (x) → δ(x). As can be seen
from (19), the crossover occurs at ξ ∼ 1, i.e. for A ∼ A0

from (2). The described phenomenon, when the gain factor
can reach many orders of magnitude, is called hypersensi-
tivity.
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Fig. 2. The electronic circuit used in our analog simulations.
Operation amplifier is µA740, electromagnetic relay and C =
2.0 µF, (circuit layout 1), field-effect transistor is 2N5114 and
C = 0.108 µF (circuit layout 2).

3 Analog simulations

Figure 2 presents two layouts of electronic circuit used
in our analog simulations. Its main blocks are the capaci-
tor and the nonlinear element with conductivity G(t) con-
trolled by voltage Vn(t), connected in parallel. The nonlin-
ear element is designed using an operational amplifier and
a commuter (an electromagnetic relay in the layout 1 and
a field transistor in the layout 2). The voltage Vn(t) have
the form of dichotomous (telegraph) noise. Note that, us-
ing a field transistor as a switching element (layout 2), one
could apply any noise to the circuit, not only a dichoto-
mous one, since there is a region with linear dependence of
conductivity of field transistor channel on controlling volt-
age on shutter (in [18,19] we used white Gaussian noise).

An input square-wave signal is represented by voltage
AE(t) with zero mean, amplitude A and period T , applied
through the resistor R. Let us write a Kirchhoff equation
for our circuit:

AE(t) − x(t)
R

= C
dx
dt

+ I1(x, z), (21)

where x(t) is the voltage under study, Cdx/dt is the cur-
rent through capacitor, I1(x, z) is the current through the
nonlinear element with fluctuating conductivity, z is the
random telegraph signal that modulates the above con-
ductivity.

-8 -6 -4 -2 0 2 4 6 8

-2

-1

1

2

Fig. 3. The static current-voltage characteristics of electronic
circuit (Fig. 1, layout 1). Relay is switched by multiplicative
noise and modulates conductivity.

From (21) we get:

RC
dx
dt

= −RI1(x, z)− x+AE(t)

= −RI(x, z) +AE(t), (22)
I(x, z) = I1(x, z) + x/R,

where I(x, z) is the current-voltage characteristics (CVC)
of the circuit. Its exact form, obtained experimentally for
two values of telegraph noise z, is represented by Fig-
ure 3. Equation (21) is identical to equation (3) (see Figs. 1
and 3) when substituting

t

RC
→ t, −RI(x, z)→ f(x, z). (23)

The parameters of f(x, z) (7) are:

∆ = 0.27, λ = −0.09, a = 1.59, x1 = 5.29 V, (24)

where x is in volts and time is in units RC = 6× 10−3 s
(layout 1) and RC = 3.24× 10−4 s (layout 2), value γ is
in units (RC)−1.

Figure 4 shows typical time series x(t) for circuit in
layout 1 for amplitude of input square-wave signal A =
0.05 V with period T = 3.3 s (the dimensionless frequency
ωs = 2πRC/T = 2πRCfs = 0.0113) for various values of
parameter γ (γ is defined by (4)). We see that a signal
of small amplitude A is amplified up to the value of the
order of x1, in accordance with equation (20). Figure 5
displays the spectral density of the output signal for the
same values of parameters.

Such a behaviour is characteristic for on-off intermit-
tency, when a system, being in laminar phase (x � x1),
is excited up to the cutoff (x ≈ x1) and returns to lami-
nar phase again soon. It can be seen also that for γ < ωs

output switchings not always follow to switchings of input
signal (the adiabaticity is broken) and the fundamental
harmonics in output signal spectrum is small. Further in-
crease of γ leads to switchings for each half of signal period
and the gain factor increases.
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Fig. 4. The output voltage x(t) (circuit layout 1) for input
square-wave signal with the amplitude A = 50 mV and fre-
quency 0.3 Hz (dimensionless signal frequency ωs = 2πRCfs =
0.0113) for several values of parameter γ (curves from above):
γ = 1.14� ∆ = 0.27 (the colored noise acts as an “effectively
white” one), γ = 0.065, 0.0068 � ∆.

A common fingerprint of on-off intermittency, together
with the power-law dependence of stationary probability
density (15), is a scaling behaviour of the distribution of
laminar phase lengths P (L) [22–28]:

P (L) ∼ L−3/2, (25)

where L is the length of laminar phase. This dependence
is observed in the interval of laminar lengths 1/γ � L�
1/|λ|. Thus the measurement of P (L) gives us another way
of determination of parameters γ and λ. We determine the
laminar phase lengths experimentally as follows: in the
time series x(t) we found a maximum xmax = x1 ≈ 5 V,
and with predefined threshold p the laminar phase of
x(t) is defined by the condition x(t) < pxmax. Figure 6
demonstrates the dependence P (L) for constant input
signal AE(t) = A = 0.015 V and laminarity threshold
p = 0.1. P (L) agrees well with theoretical prediction equa-
tion (25). From Figure 6 we obtain |λ| ≈ 0.1 and γ ∼ 1,
that complies with the direct measurement of γ ≈ 1.14
from the spectrum of controlling noise, and with the value
λ = −0.09 determined from CVC in Figure 3.

Figure 7 shows the dependence of gain factor from the
value of parameter γ. The gain factor is defined as

K(A) =
√
SV (fs)∆f/A, (26)

where SV (fs) is the spectral intensity of the fundamental
harmonics of output signal (fs = 1/T = 0.3 Hz, ωs =
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Fig. 5. Power spectral density of output voltage fluctuations
for input square-wave signal with the amplitude A = 50 mV
and frequency 0.3 Hz (ωs = 0.0113) for values of parameter
γ = 0.0068(1), 0.065(2), 1.14(3).
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10000

Fig. 6. Distribution of laminar lengths for constant input sig-
nal AE(t) = A = 15 mV and laminarity threshold p = 0.1 for
γ = 1.14. The solid line is drawn according to equation (25).

2πfsRC), ∆f = 0.03 Hz is the spectral bandwidth. For
the circuit 1 we see that for γ < ωs the adiabatic condition
for signal is violated and the gain factor decreases. In the
circuit 2 the dimensionless signal frequency is ωs = 6.1×
10−4 < γ. However for large γ the parameter α is close
to unity, according to the expression (14), and the gain
decreases again.
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γ

Fig. 7. Dependence of gain factor from parameter γ for input
square-wave signal with the amplitude A = 10 mV and period
3.3 s. The dimensionless signal frequency is ωs = 0.0113 (circuit
layout 1 (4)) and 6.1× 10−4 (circuit layout 2 (©)).

4 Conclusions

To conclude, we show with analog simulations and theo-
retically that the phenomenon of hypersensitivity to small
alternating signals is observed in the system with on-off in-
termittency under effect of multiplicative controlling noise
with finite correlation time 1/γ and sufficiently large in-
tensity ∆. The gain factor of signal displays a maximum
in the optimum range of noise correlation times.

We demonstrate also that for systems with on-off in-
termittency an universal scaling index of hypersensitivity
exists. The condition of hypersensitivity, determined by
the value of this index, is the same for different systems
with on-off intermittency, and the system specifics reveals
itself only in dependence of this factor from system pa-
rameters. We hope that the observed phenomenon could
be used in new types of detecting devices, and, probably,
shed a light on the unique ability of biological systems to
detect weak signals in noisy environment.

We are grateful to N.E. Savitskaya for valuable remarks. The
work was done within the framework of the RFBR grant N
99-02-17545, and supported by the State program “Physics
of quantum and wave processes”, subprogram “Statistical
physics”, project VIII-3, and by State program “Neutron re-
search of condensed state”.
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